当前位置:淘百问>百科问答>可导一定可微,可微一定可导吗?

可导一定可微,可微一定可导吗?

2023-03-30 07:54:54 编辑:join 浏览量:600

可导一定可微,可微一定可导吗?

可微一定可导,可导不一定可微,各变量在此点的偏导数存在为其必要条件,其充要条件还要加上在此函数所表示的广义面中在此点领域内不含有“洞”存在,可含有有限个断点。

在一元函数中,可导与可微等价。

一元函数中可导与可微等衡闷敏价,它们与可积无关。多元函数可微必可导,而反之不成立。

即:在一元函数里,可导是可微的充分必要条件;

在多元函数里,可导是可微的必要条件,可微是可导的充分条件。

可微:设函数y=f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A与Δx无关,则称函数f(x)在点咐枝x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即罩带dy=A×Δx,当x=x0时,则记作dy_x=x0。

可导:即设y=f(x)是一个单变量函数,如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数

标签:可导,可微,一定

版权声明:文章由 淘百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.taobaiwen.com/answer/34448.html
热门文章