整数实际上可以看做是一个特殊的分数,分母是1.
整数除分数,也就是分数除以整数,等于分数乘以整数的倒数,例如3/4除以5,等旅含于3/4乘以1/5,(3/20)
分数除整数,或者说整数除以分数,等于 整数乘以 分数的倒数,例如3除以2/5,等于3乘以5/2
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
扩展资料:
我们以0为界限,将整数分为三大类:
1. 正整数,即大于0的整数如,1,2,3······直到 。
2. 零,既不是正拆汪笑整数,也不是负整数,它是介于正整数和负整数的数。
3. 负整数,即小于0的整数如,-1,-2,-3······直到 。(n为正整数)
注:零和正整数统称自然数。
整数也可分为奇数和偶数两类。
注意:小学阶段与小学阶段以后的分数定义有所不同,小学阶段 , 等都姑且视为分数。但实际上,只有不等于整数的有理数才是分数,所以 , 等都不是分数。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做真分数如: 或 ,也可能成为假分数,也就是分子大于或者等于分母,例如 。分母表示把一个物体平均分成几份,分子表示取了其中的几份。
奇偶性:
1. 奇数±奇数=偶数,偶陵氏数±偶数=偶数,奇数±偶数=奇数,偶数×偶数=偶数,奇数×偶数=偶数,奇数×奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差为奇数,偶数个奇数的和、差为偶数;
2. 奇数的平方都可以表示成 的形式,偶数的平方可以表示为 或 的形式;
3. 若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;一个整数的平方根若是整数,则两者具有相同的奇偶性。
参考资料:百度百科---分数
参考资料:百度百科---整数
标签:除以,分数,整数