当前位置:淘百问>百科知识>勾股定理小论文

勾股定理小论文

2023-08-19 00:24:09 编辑:join 浏览量:554

勾股定理小论文

勾股定理的新验证法

「摘要」这是我独立思考出在课本所学知识之外的验证方法,它能使我更一步的了解勾股定理,使我在勾股定理的海洋中再潜下一层,获取“珍宝”,也为我在将来的学习中打下勾股定理的基础。

「思考」当我在资料中了解到勾股定理有那么多种证明方法时,我便想了解到一种新的解法。因为当我在听到这个资料时,我才知道我只获取了勾股定理的海洋中表层的小鱼,所以,我被我的好奇心带到那勾股定理的海洋深处,同时也将我带入了要了解新的勾股定理验证方法的心态中,我抱着这种想法,去了解它。

「去做」

作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。 过点C作AC的延长线交DF于点P.

∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

∴ ∠EGF = ∠BED,

∵ ∠EGF + ∠GEF = 90°,

∴ ∠BED + ∠GEF = 90°,

∴ ∠BEG =180°―90°= 90°

又∵ AB = BE = EG = GA = c,

∴ ABEG是一个边长为c的正方形。

∴ ∠ABC + ∠CBE = 90°

∵ RtΔABC ≌ RtΔEBD,

∴ ∠ABC = ∠EBD.

∴ ∠EBD + ∠CBE = 90°

即 ∠CBD= 90°

又∵ ∠BDE = 90°,∠BCP = 90°,

BC = BD = a.

∴ BDPC是一个边长为a的正方形。

同理,HPFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

A^2+B^2=C^2.

(图大概就是这样)

「好处」

这是我自己想出来的解法,虽然这与其余的证明方法有所重合,但这是我自己想出来的,没有任何外界的帮助。这使我在同学间新多出了一种解决方法,其余同学未掌握的方法,也使我比其余的同学知道得更多。

「关键词」勾股定理 证明方法

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.

证明方法:

先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 , b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2

图(1) 图(2)

勾股定理的历史:

商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期

西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四

,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径

隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理.

关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾

三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的.

赵爽:

•东汉末至三国时代吴国人

•为《周髀算经》作注,并著有《勾股圆方图说》.

赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒

等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的

独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明

勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已.

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中

体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正

是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系

与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思

想与方法在几百年停顿后的重现与继续."

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段

一段丈量,那么怎样才能得到关于天地得到数据呢?"

商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩'

得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这

个原理是大禹在治水的时候就总结出来的呵."

王八

标签:勾股定理,论文

版权声明:文章由 淘百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.taobaiwen.com/article/296279.html
热门文章