运算法则公式如下:
1、lnx+
lny=lnxy
2、lnx-lny=ln(x/y)
3、lnxⁿ=nlnx
4、ln(ⁿ√x)=lnx/n
5、lne=1
6、ln1=0
扩展资料:
由指数和对数的互相转化关系可得出:
1、两个正数的积的对数,等于同一底数的这两个数的对数的和,即
2、两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差,即
3、一个正数幂的对数,等于幂的底数的对数乘以幂的指数,即
4、若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数,即
高一对数函数运算法则
1、a^(log(a)(b))=b
(对数恒等式)
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
证明:
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b.
2、因为a^b=a^b
令t=a^b
所以a^b=t,b=log(a)(t)=log(a)(a^b)
3、MN=M×N
由基本性质1(换掉M和N)
a^[log(a)(MN)]
=
a^[log(a)(M)]×a^[log(a)(N)]
=(M)*(N)
由指数的性质
a^[log(a)(MN)]
=
a^{[log(a)(M)]
+
[log(a)(N)]}
两种方法只是性质不同,采用方法依实际情况而定
又因为指数函数是单调函数,所以
log(a)(MN)
=
log(a)(M)
+
log(a)(N)
4、与(3)类似处理
MN=M÷N
由基本性质1(换掉M和N)
a^[log(a)(M÷N)]
=
a^[log(a)(M)]÷a^[log(a)(N)]
由指数的性质
a^[log(a)(M÷N)]
=
a^{[log(a)(M)]
-
[log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M÷N)
=
log(a)(M)
-
log(a)(N)
5、与(3)类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)]
=
{a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)]
=
a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质4可得
log(a^n)(b^m)
=
[m×ln(b)]÷[n×ln(a)]
=
(m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)]
例如:log(8)27=log(2³)3³=log(2)3
再如:log(√2)√5=log(2)5.
loga(N)n=n·logaN.
(分析)欲证loga(N)n=n·logaN,只需证
Nn=an·logaN=(a·logaN)n,
只需证
N=alogaN.
由对数恒等式,这是显然成立的.
对数运算法则推导
标签:定头,对数