用配方法解一元二次数悄方程的一般步骤:
1、把原方程化为的形薯老渣式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;含尘
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
扩展资料:
配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)² = x² + 2xy + y² 的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y² = (b/2a)² 。
例分解因式:x²-4x-12
解:x²-4x-12=x²-4x+4-4-12
=(x-2)²-16
=(x -6)(x+2)
求抛物线的顶点坐标
【例】求抛物线y=3x²+6x-3的顶点坐标。
解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6
所以这条抛物线的顶点坐标为(-1,-6)
参考资料来源:百度百科——配方法
标签:一元二次方程,用配