问题补充说明:如何根据矩阵或行列式求解主应力
简单描述下过程
比如矩阵a1a2a3
b1b2b3
针宽站但衣护松两c1c2c3
a1-xa2a360问答3
b1b2-xb3
c1c2c3-x
此矩阵的行列式为0,
求出x均为主应力,x最小的则为最小主应力。
呵呵,你这不是会求么,两个本质一样,我这是应力特征方程求解的推导的过程,如果把行列式为0展开,最后式子就是应力特征方程,只不过我这个就不用记那个方程而已,不过记住方程省去行列式展开频固社重时间了
道理上说是一样的,因为行列式为零展开后化简之后就是特征方程.但是如果应力有公约数的话,比如都是2的倍数,可以把2从行列式里面提出来再代入特征方程或构聚儿标米院独硫者计算行列式为零搞景.
不过我又想到,如果你行列式的化简很厉害的话,能把
a1a2a3
b1b2b3
c1c2c3
取史资味计管头设艺房很容易的化简成
A00
0B0
00C
那不就直接求出主应力了,不过这要你行列式化简足够厉害,否则的话还是按照特征方程来解,就算错了,考试也会有过程分述块句越引远身守简数的。
标签:主应力,求解